18991 5nring 2017
30 Object Reconstruction

Group 3: David Buzzell, Pragna Mannam,
David Zhou

Introduction
Background
Problem
Solution

Algorithms
Signal Flow
Point Cloud Retrieval
Filtering
Registration
Segmentation
Meshing and Visualization

Code Hierarchy
Data Flow
Android Environment (Java / C++ for NDK)
PCL (C++ in Visual Studio)

o ©O© © © 0 0 o o A~ M b W dDNDNDDN

-_—

Demo 12
Interactive Data Collection 12
Demo App 12

Results 14
Successes 14
Limitations and Fallbacks 16

Feedback 20
Mid-Project Oral Report 20
Final Oral Presentation 21
Demo Day 22

Schedule 23

Future Work 24

Acknowledgements 25

References 25
Bibliography 25

Appendix 26
Appendix A: Project Tango API 26
Appendix B: VoxxIr 27
Appendix C: Cmake 28

Introduction

Background

In researching this project idea, we came across a current Project Tango app Wayfair
View, which does object reconstruction based on current furniture models, but then inserts them
into the current environment (augmented reality). We wish to focus on generalized models that
can be used for any application, eliminating the use for the physical object. In addition, there are
a few previous 551 projects that have similar aspects to our proposed project: Big Brother Ain’t
No Cyclops (Group #11, Fall 2006 - creates full face models using only partial information), Get

in my Belly! (Group #6, Fall 2008 - creates a 3D model of an organ from medical images).

Problem

2D images or textual descriptions of objects provide a very limiting description of the
object. 3D object reconstruction is so detailed that it could eliminate the need to have the
physical object, which has many different applications. The model would provide sufficient
information such as scale, color, texture, etc. The most practical application of having a model of
a physical object is for measurement. Knowing the real-life scale of an object can help you place
it into new environments without guessing. Specifically, one possible application for 3D object
reconstruction is to create a model for a piece of furniture you are considering purchasing.
Inserting the furniture into an image of your home can give you an idea of how well it fits in

your home, aesthetically and literally. Other applications include interior design, modeling larger

scale systems, and providing a CAD-style overview for designers. Our project involves creating

3D models from real-life objects.

Solution

We will be taking point cloud data of objects and building models from them. This
creates an easy and intuitive way to create 3D models, which will be more efficient than
tediously modeling an object using softwares like CAD. Project Tango provides guides and
toolkits for motion tracking, area learning, and depth perception, as well as advanced topics. On

top of creating a point cloud, we will use information to recreate the objects.

Algorithms

Signal Flow
* multiple
Retrieval perspective
point cloud

Motion- 2 S
- * combining
> ma'l.uhlng_& PP i
Registration
* extract
»| Segmentation | object
+ form surface

Meshing & » finalize model
Visualization |* disply

Point Cloud Retrieval

To begin this project, we first collected the 3D depth information of our whole
environment. We used a Project Tango tablet with 3D camera capabilities to record this depth
information in a point cloud format. We set up our room environment so that it is as uncluttered
as possible, setting up the object exactly 1.5 meters away from the tablet and directly in the

center of the Lazy Susan, both on a level table in the room (see Figure 1).

Figure 1: Hardware setup for PC extraction

While Tango API can perform depth perception calculations by using its 3D depth
technologies from different views in order to create a thorough 3D model, we used the wrapper
app, Voxxlr, as our method of collection (due to the abstractions away from Android File I/O
issues, which are explained later). Recording at 0.5 voxel resolution (where voxel is the 3D space
equivalent to pixel resolution) and at 2 seconds per voxel recording rate, the app is able to record
3D floating-point coordinates (X, y, z) along with RGB color data relating to each visible point
from the Project Tango tablet’s cameras. This point cloud is then uploaded to Voxxlr’s servers,
which we can then download the point cloud as a .PLY file (a common file format for point

clouds as well as .PCD file) on a laptop running the appropriate algorithms detailed below.

Filtering

The 3D point cloud data collected by the Tango device could have significant noise. We
tried to limit the amount of noise and background by collecting the data in a room with white
walls and cleared all other objects out of the room. The test object was put on a table. However,
measurement errors from the Tango device are relatively large. Those noise and errors could lead
to erroneous results in our future steps. So we implemented filtering to remove outliers from our
point cloud data. Algorithmically, we used Point Cloud Library (PCL) to compute the
distribution of point-to-neighbor distances in the input dataset. We iterated over all the points
and computed the mean of distance to neighbor for each point. Assuming the distribution of
mean distances is Gaussian, all points whose mean distances are outside an interval defined by
the global distances mean and standard deviation can be considered as outliers and trimmed from

the dataset.

Registration

There are two methods of doing registration using the Tango device. The first one is to
take snapshots of a test object at different angles and try to stitch all the views together. The
other method is to execute registration during data collection. Due to time constraints and

complexity, we used both methods in our project.

For the first method of stitching snapshots from different angles of an object, we set up
the data collection phase by putting the test object on a Lazy Susan (with various angles being
marked). The Tango device is located on a fixed point, and the distance from the Tango device to

the center of the the tray being fixed. The next step is to take snapshots of point cloud data using

the tango device. In this step, the object is examined usually at 0°, 90°, 180°, and 270°. At each
angle, multiple snapshots are taken because the Tango device can only collect a relatively sparse
point cloud using this snapshot method. Registration is then done on all the point clouds that are
taken at the same angle. This enriches the point clouds. Consequently, we have 4 relatively high
quality point clouds at 4 different angles. Then, we inspect the data and shift the center of all the
point clouds to the origin of the coordinate system. A rotational transformation is applied to all
the points in the point clouds. The last step is then to perform the Iterative Closest Point
algorithm to achieve the final result. The algorithm takes two point clouds as input. One of the
point cloud is considered the target point cloud, which is fixed. The other point cloud is
considered the source. The goal of the algorithm is to create a matrix transformation so that the
source point cloud can match closer to the target point cloud. From each point in the source point
cloud, a mapping will be created between that point and the closest point in the target point
cloud. If a point in the source point cloud does not have a closest point in the target point cloud
within certain distance, the point will be neglected for mapping purpose. Next, find the
optimized rotation transformation for the source point cloud by minimizing root mean square
point to point distance after the transformation. Lastly, the optimal transformation is applied to

the source point cloud. These steps are repeated until two clouds are close enough to each other.

We also utilized the registration capabilities of VoxxIr app as fallback option for our
registration operation. The Voxxlr app collects point cloud data in a non-real-time fashion. On
startup, Voxxlr creates a point cloud snapshot, and using the motion tracking capabilities of the
Tango device, it collects information about the device’s movement and applies a transformation

to the point cloud data collected afterwards so that all point cloud data is placed in a coordinate

system based on Tango’s camera’s perspective. By doing so, the VoxxIr app allows us to create
point clouds of 360 ° of any object in a scene. When collecting data utilizing this innate
registration capabilities, we no longer need to set up the Lazy Susan and measure the distance

manually for registration.

Segmentation

After experimentation with segmentation methods like edge detection and plane model
segmentation, we settled on Euclidean cluster extraction. The algorithm for Euclidean clustering
organizes a point cloud as a Kd-tree. For each point, we add points close by to a queue. Once all
the appropriate points are added to the queue, we deem that the points in the queue form a
cluster. Pivotal parameters to choose the points considered to be a part of a cluster are distance

threshold, minimum and maximum cluster size, and maximum iterations [!!.

For some objects the clustering extraction was not good enough to distinguish planes
from objects. However, the water bottle, shoe box, and the shoebox segmented tremendously
well using Euclidean clustering extraction. Therefore we finalized on this method of

segmentation.

Meshing and Visualization

The fast triangulation method was the only surface method we tested due to time
constraints. We tested this method on a variety of shapes of objects. For a cylindrical object like
a water bottle, triangles are sub-optimal at recreating the rounded surface. However, it performs

slightly better for a rectangular object like a shoe box. Furthermore, a more complex shape like a

backpack surface is recreated relatively well with fast triangulation. Across all object fast
triangulation surface recreation worked decently. Without an interface to Tango through Android

Studio, we had to visualize the models on a laptop through Visual Studio.

Parameters used to adjust the triangulation to specific objects include maximum nearest
neighbors, search radius, and minimum and maximum angles per triangle. For small objects like
the water bottle, we set the maximum nearest neighbors to smaller values like 100 points. Large
objects like the backpack required 500, which caused latency issues (12 minutes) in mesh model

rendering, which took the longest time in the data flow.

Code Hierarchy

Data Flow

Using the Tango Tablet, we collected depth and color information using Voxxlr. Voxxlr
is a point cloud data collection app that uses Tango Core. Then VoxxIr uploads the point cloud
data to its server, which we can access on a laptop. Using Point Cloud Library resources, we

implement the object reconstruction algorithms on a PC in Visual Studio.

Android Environment (Java / C++ for NDK)

Originally, we were using Tango API directly in the Android environment to extract the
point cloud. We used the developer’s project cpp_point cloud example as a starting point for
being able to view the point cloud in real-time on the Tango Tablet screen. Modifying some
functions in the Java app and C++ NDK code, we then built a “snapshot” capability that allowed

us to capture the current point cloud and save it to a file. Unfortunately, the file I/O process did

not perform accurately enough for our application, driving us to switch to the VoxxlIr app for

point cloud data collection and retrieval.

Once we got to the demo, we did end up building an Android app (purely in Java) that
allowed viewers to guess which models matched the point clouds we extracted. Due to time and
the complexity of displaying 3D mesh models inside an Android app, we left these models has
picture snapshots that we took after fulling building the model inside a laptop running PCL and

the fast triangular meshing algorithm.

PCL (C++ in Visual Studio)

Once collected, the point cloud will be processed using PCL. Based on the methods used
for registration (mentioned in the Registration subsection of Algorithm), we go through two
slightly different procedures. If we are doing registration from scratch, the first step is to
visualize and inspect the raw point cloud. However, if data is being collected using the

registration technology of Voxxlr, the preprocessing steps will not be necessary.

Preprocessing:

The point cloud will likely have some offset away from the origin. Thus, it is necessary to
manually adjust the point clouds to the origin of the coordinate system. (Note that in point cloud
collected by Tango, x is the horizontal direction, y is the vertical direction, and z is the direction
from the camera towards the object.) We then use a cloud moving module to shift the point cloud
so that it stays roughly around the origin point of the coordinate system. Afterwards, we

eliminate any points outside of a certain radius (usually predefined based on the dimensions of

10

the test object). As described in the Registration section, at this point, we should have several
point clouds of the object taken from different perspectives. The next step is to rotate the point
clouds taken from multiple views to the proper angle, and run the registration algorithm. At the

end, we filtered out any outliers in the resulting point cloud.

Modeling:

When 360° data is collected by VoxxIr directly, we need to apply the Euclidean cluster
extraction algorithm to segment the actual test object from the table, walls or any other
background object. Once this is done, depending on the nature of the object, we sometimes
choose to do another round of filtering using statistical outlier removal (in some cases this could
result in worse models). The last step is to run the meshing algorithm to ensure the model is

generated.

11

Demo

Interactive Data Collection

The first part of our demo consisted of a live data collection session. We had a setup of
an object on a Lazy Susan exactly a certain distance away from the Tango running the VoxxIr
app. People were able to collect 3D raw point cloud data of anything (as Voxxlr is better at
collecting landscape data). Then we collected data from all 360-degree perspectives of an object

throughout the demo session to simulate our data collection process to passer-byers.

Demo App

Our demo was two-fold. We wanted to let people see how we recorded the point clouds
with our setup and interact with the models in a game format. First, we had viewers try out the
VoxxIr app, get accustomed to how it records data, and try it on our table setup with the object
on a Lazy Susan. Once the recording was complete and they uploaded the file to VoxxlIr’s
servers, we then downloaded the file and let them explore their recording in Voxxlr’s online
viewer. This way, people could actually visualize the amount of 3D work we collected when
making these models and how visually accurate the information was to the actual environment

they recorded.

For the second part of our demo, we wanted people to understand the mesh models that
we created and how we got them from the original point cloud file. Thus, we built a quick app
purely in Java to be used on our other Android device that allows users to guess with model was

made from which point cloud. For the models best designed using our meshing algorithm, most

12

viewers were able to correctly identify the mesh model (i.e. shoe box, backpack). However, the
only one most viewers labelled incorrectly was the object not designed for this particular
meshing algorithm (i.e. water bottle), thus defending the fast triangulation meshing algorithm’s

effectiveness.

13

Results

Successes

Despite our fallbacks, we were able to build relatively realistic 3D models on a laptop.
During our demo game where people guessed what the models represent, most people were
successful. This shows that our models were representative and achieved the basic requirement
of 3D object reconstruction. The segmented mesh models of a water bottle, shoe box, and

backpack are shown below.

Figure 2: Mesh Model of the Water Bottle

14

Figure 3: Mesh Model of the Shoe Box

Figure 4: Mesh Model of the Backpack

15

Limitations and Fallbacks

Our largest limitation in implementing this project and by far the largest time-drain was
ironically the conceptually least difficult part of this project. For some reason (as seen and
reported by other fellow 551 groups as well), performing file output operations on an Android

device is near impossible to perform with 100% accuracy and no bugs.

Firstly, we were using the C++ library to extract the point cloud from the Tango API
(originally we had plans to compile PCL on our Tango tablet as well, thus perform all of the
necessary calculations on the tablet, all in C++). However, none of the file operations in Android
NDK (the framework for supporting C++ in Android environments) are fully supported, and
nearly all documentation suggests using Java for file output functions. This required us to now
send the point cloud struct through the NDK/Java boundary, which is not designed for large
structures of data (like a 17000-point point cloud) and thus has inaccurate performance.
Furthermore, simply writing a text file to the Android device is not as simple as with other file
systems. Writing to an external storage device (i.e. an SD card) is manufacturer specific, thus
cannot be written as a general purpose function in Android. Even writing to the internal storage
is difficult, because of the USB indexing that happens. In order to view a file on the Android
device, you must reset the USB indexing function that accesses the Android device, which is not
supported in Android Studio (other than reconnecting the device every time you write a file).
And even after all of that, the file would only write to the internal storage about 30% of the time,
even after Android Studio reported a “successful file-write operation”. The whole process was

very frustrating, and with very little known solutions available online, moving the point cloud

16

retrieval process to the Voxxlr service was one of the smartest and time-saving moves our team

made.

In the Registration step of our project, we were able to achieve partial registration using
point clouds taken at the same angle to enrich snapshots of point clouds as shown in Figure 5 and
6. However, we were not able to create a fully registered model from all angles. The tricky part
of registration is that it requires all the points to be roughly taken at the same view point.
Meaning that all point clouds should share one coordinate system. Since the measurement noise
created by using Tango, it is very difficult to align all the clouds without the precise motion
tracking data. Since we failed to implement PCL on Android, it is extremely difficult to refine
the errors and noise in the point cloud data so that they can align perfectly after registration. In
addition, in our experimental setting, the object is located on a Lazy Susan from a fixed distance
away from the Tango device. This means that we have to eliminate the background before
rotating and aligning the point clouds. Otherwise, after rotation on the Lazy Susan, the resulting
point cloud would consist of overlaps of point clouds that didn’t appear in real life. A possible
solution is to only fix the position of the test object and rotate the Tango device around the test
object at fixed distance. However, that will also require rotation and alignments of the cloud

since each snapshot of point cloud will be taken with a new coordinate.

17

B | Matrix transformation example

Figure 5: Top-down view of point cloud achieved by registering snapshots of point clouds from
the left side of the water bottle.

B ' Matrix transformation example

160.7 FPS

Figure 6: Horizontal view of point cloud achieved by registering snapshots of point clouds from
the left side of the water bottle.

The filtering method also has limitations. For more complex objects, like the backpack,
the statistical outlier removal algorithm removes plenty of the meaningful data points, which
results in a lesser quality mesh model. Another minor drawback of our project is the modeling
algorithm. The fast triangularization method that we chose performed well on shapes with sharp
edges (such as the shoe box) and complex-shaped objects (backpack) but not objects with curves
(like the water bottle). The reason for this trend is that triangles do not closely represent circles to

form curves surfaces.

19

Feedback

Mid-Project Oral Report

At the end of the mid-project oral report, we received several concerns about how we
were going to capture our point cloud data and stitch it together properly and easily. Upon
suggestion, we purchased a Lazy Susan, a turntable device that allows us to rotate the object
accurately and easily by marking the desired rotations on the Lazy Susan itself (see picture

below). We only needed the Lazy Susan for the recording methods involving our own

registration functions, so when we used VoxxlIr’s registration method as a backup the Lazy Susan

was cut from the recording setup.

Since our app was recording in real-time originally, it was also suggested to use a motor

that would automatically rotate the Lazy Susan at a desired speed for recording. Once we
switched to a non real-time recording solution (VoxxlIr), the need for the motor was no longer

necessary.

20

Figure 5: Our Lazy Susan with appropriate markings for rotation (0°, 90°, 180°, 270°)

Final Oral Presentation

During our final oral presentation, we received concerns about our demo format and our
progress. Suggestions were made that we should display partial models of registration,
segmentation and meshing. We were able to successfully display how we can segment models
from a 360-degree-view point cloud as well as our capability to create rough models of the
objects. During demo session we had models of a water bottle, a shoe box, and a backpack being

displayed in our demo app.

21

Demo Day

The feedback we received on demo day was concerning our registration efforts. While
VoxxIr performed its own filtering and registration, we were making efforts on our own that
were not ready by demo day. We made sure that we would be finished by the final report to

remedy this.

22

Schedule

Tasks Assigned to Deadline
Getting a Point Cloud Buzzell 2/10 - 2/26
Importing/Compiling PCL David Z. 2/25-3/5
Filtering Point Cloud David Z. 3/6 - 3/12
Motion-matching David Z. & Buzzell & Pragna | 3/13 - 3/19
- On sample data
- Real objects
Registration David Z. & Buzzell & Pragna | 3/20 - 3/26
3D Object Segmentation Pragna 4/9 - 4/15
- Euclidean clustering
Object Model Rendering Pragna 4/16 - 4/23
Visualization Buzzell 4/23 - 4/29
Interacting with Model/ David Z. & Buzzell & Pragna | 4/30 - 5/4

Prepare Demo

23

Future Work

As stated before, having our largest time hangup in Android File I/O was something very
unexpected and difficult to remedy so late in the project. It’s possible that with more time that we
could have figured out all of the issues with Android File I/O, but it’s more reasonable to say that
we could have had more time for other work had we used an app like VoxxIr earlier on in our
project phase. Also, integrating PCL with Android would have been a possibility if we got File

I/0O working better at the end.

According to documentations by PCL, PCL registration is aimed to align two point
clouds that are relatively close to each other. Since it essentially tries to find the optimized
rotational transformation of the original object that minimizes points with smallest distance.
There are couple ways to improve the quality of registration. The first of all is to include RGB
data in the point cloud. By doing so, each point in the point cloud will essentially be points in a 6
dimensional space. In the Iterative Closest Point algorithm will have more accurate point
matching between two clouds. Another way of improvement is to include more background data
in each shot, and match data points using key point detection algorithms such as SIFT to create

point mapping between two point clouds.

While the fast triangulation meshing technique was more effective on complex objects
like the backpack, we could experiment with more meshing techniques that could seamlessly

create surfaces for different types of objects or try shapes other than triangles.

24

Acknowledgements

We would like to thank Professor Sullivan and Savvides for their support and guidance.

Furthermore, Markus helped us overcome hurdles in our project.

References

Bibliography
[1] "Euclidean Cluster Extraction." Documentation - Point Cloud Library (PCL). Point Cloud
Library, n.d. Web. 10 May 2017.

<http://pointclouds.org/documentation/tutorials/cluster_extraction.php#cluster-extraction>.

[2] "Fast triangulation of unordered point clouds." Documentation - Point Cloud Library (PCL).
Point Cloud Library, n.d. Web. 10 May 2017.

<http://pointclouds.org/documentation/tutorials/greedy projection.php>.

[3] “Getting Started with the Tango APL.” Tango C API. Google Developers, n.d. Web. 10 May

2017. <https://developers.google.com/tango/apis/c/>.

25

http://pointclouds.org/documentation/tutorials/greedy_projection.php
http://pointclouds.org/documentation/tutorials/cluster_extraction.php#cluster-extraction
https://developers.google.com/tango/apis/c/

Appendix

Appendix A: Project Tango API

As discussed earlier in the report, our original project conception directly used the Tango API in
order to capture point clouds and output to the file for PCL to use. This is a cursory guide to how
to setup this section of the project, with a lot of hours of documentation-reading and long hours

of debugging going into this expertise.

First configure the Tango API code package for your device. The guide we used is listed here, as

created by the Google Developers page: <https://developers.google.com/tango/apis/c/>. We used

the C++ examples for our project, but there is also listed support for the Java and Unity versions

on this site as well.

Once configured, follow the instructions on that site to load up the cpp point cloud example
(should require an import from VCS in Android Studio). There’s a large amount of files in this

project, but here is the main files that you will need to edit:

e PointcloudActivity.java - the Java file for your GUI (tells the button/view what to

display/activate)

e TangoJNINative.java - the Java wrapper file that allows you to call C++ functions in your

Java activities

26

https://developers.google.com/tango/apis/c/

e jni_interface.cc - the C++ wrapper file that defines the parameters/return values of your

Java function call and what C++ functions to call to determine the return values

e point cloud app.cc - the C++ file for all of the Tango functions (such as

TangoPointCloud types)

e AndroidManifest.xml - the definitions file that you will need to check and update in order

to configure Tango and File I/O properly for your app

I recommend reading through the other files to get a general idea of how information is passed
between the two interfaces (Java and NDK). A lot of documentation and online forums (i.e.
Stack Overflow) will be necessary to provide correct and helpful solutions (as many solutions
tended to contradict each other). Oh and when in doubt, restart Android Studio (seriously, this

software is so buggy that sometimes that’s the only thing that was wrong with your project).

Appendix B: VoxxIr

To contrast, VoxxIr is super easy to work with and requires very little explanation. At the time of
writing this report, VoxxlIr is a beta app released for certain Project Tango devices (i.e. designed
for our Project Tango tablet but could not run on our newer Lenovo Phab) that works on top of

the Tango API to record point clouds and save them in the convenient .PLY extension.

First, download the app from the Google Play Store (requires an active Google account). Then,
register for a VoxxIr account (allows for Google account signup, for your convenience). Once

registered, you can now record and save your point clouds to your account on Voxxlr, viewable

27

on any computer device with a decent internet browser. Under their free plan, you can upload a
limited amount of point clouds and can have only so many people viewing it at one given time
due to bandwidth caps; however, keep in mind that VoxxIr is designed for very large scale
projects (i.e. full landscaping, room modelling), and so our smaller scale use of the app barely
made a dent in our storage or bandwidth caps. After that, you can then download the point cloud
files to a .PLY file on your computer, which you can then import to your PCL programs. There
may be more features and systems available in the future, but the app is very simplistic currently

and performs pretty much all that we needed for this project.

Appendix C: Cmake

Cmake configuration of PCL is extremely critical for this project. First of all, it is critical to stick
with PCL 1.8.0, and we strongly recommend using PCL 1.8.0 all-in-one installer for Windows

OS because it includes all the dependencies. In addition, Visual Studio 2013+ is recommended.

Make sure the project names and filenames are correct. More importantly, check
PCLConfig.cmake in the cmake directory under your PCL 1.8.0 for cmake path variables and
make sure cmake can find the proper libraries before compile. For further details please consult

the README file in our drive.

28

